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s ABSTRACT
l‘ A DECOMPOSITON PROCEDURE FOR CONVEX QUADRATIC PROGRAMS

C. M. Shetty
Mohammed Ben Daya
School of Industrial and Systems Engineering
Georgia Institute of Technology
- Atlanta, Georgia 30332-0205

This paper deals with the solution of convex quadratic programs by

\ iteratively solving a master problem and a subproblem as proposed
previously by Sacher. The approach has the advantage that the -

;7 ' subproblems are linear programs so that existing schemes for solving

-y
._'Ji..u :

large problems can be taken advantage of. This paper gives a closed form

solution to the master problem so that the procedure is well suited for

b

solving large quadratic programs and can take advantage of the constraint

l structure.
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1. INTRODUCTION

Consider the following quadratic program

QP: minimize %-xth + ctx
subject to Ax > b
x>0

n mxn
where x e R, A e R and B is positive semi-definite,

A decomposition algorithm using Lemke's method was proposed by
Sacher [1] to solve Problem QP. The method solves the original problem
by iteratively solving a master program and a subprogram.

In this paper, we solve the master program using the gradient
projection method of Rosen [2] in Section 3 and by the Reduced Gradient
Algorithm in Section 5. The methods take advantage of the special
structure of the master program and reduce the algorithms to simple

arithmetic calculations.

2. The Sacher Algorithm

Sacher's procedure uses an inner linearization approach followed by
restriction and is a nonlinear version of the Dantzig-Wolfe decomposition
principle [3]. His algorithm is essentially of von Hohenbalken's
simplicial decomposition method [4] [5] when speclalized to a quadratic

objective function.

Algorithm:
Step O:

Let P and Q be matrices whose columns are affinely independent

extreme points and directions respectively of the set {x: Ax > b, x >0}.

Fere P must have at least one column, but Q may be vacuous.
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Step 1:

(Master program). Solve the following problem by Lemke's method.

1 -
MP: minimize E-(:] B (:) +c (:)
subject to etu = 1; u>0, v>0

t
PtC).
Q¢

the solution is unbounded, STOP. The original problem has an unbounded

where B = (P,Q)tB(P,Q) and ¢ = ( Denote the solution by [u,v]. If

objective function.
Step 2:

Set x = Pu + Q;.
Stép 3:

(Subprogram). Solve the following program.

SP: minimize htx

subject to Ax > b, x > 0

where h = BPu + BQG + ¢c. 1If the solution is bounded denote it by £.
Otherwise, let x be a (normalized) direction of recession for which
n%% < o.
Step 4:

Stop if ; is an extreme point and ht; = ht;,the solution to QP is x;
otherwise go to Step 5.
Step 5:

(Updating). 1If u, = 0 (v1 = 0, regspectively), delete column i of P

i
(Q, respectively). If x 1s an extreme point, replace P by (P,*).

Otherwise replace Q by (Q,;). Go to Step 1.
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3. Solving the Master Program Using the Gradient Projection Method

We will solve the master program MP using the Gradient Projection
Method (GPM) of Rosen [2]. It may be recalled that at a feasible point,
the GPM method projects the gradient of the objective function on the
null space of the gradients of the binding constraints. It will find an
improving feasible direction, if one exists, and a one dimensional
optimization problem is solved to find the optimum distance to move in

the chosen direction. Because of the special structure of the master

problem, closed form solutions to the above can be obtained, and the

resultant algorithm is given below. Section 4 gshows that the steps

)

specified ére precisely those obtained by the GPM method.

Algorithm:
Step 0: ,b:;g
t S
Choose a point (ul,vl) with e u, = 1, uy > 0 and vy > 0. o
Let I_={i: u, >0} ; |1 | =n
P 1 P P
= : . - . = +
I,={i: v, >0} ; |1d| ng3n=n+ny
K = {i: u, = 0} ; K =1I\K K| = i
p = HLiuy =0} i N -
Ky = {1: v, =0} ; Ky = LK, |Kd| d
Let k =1 and go to step 1.
Step 1: _
Compute Vf(uk,vk)
1 t= -
where flu,v,) = = (k) B(‘k) + c(Fx)
k'k 2 Vi Vi Vi
1.2 n L
Let Vf(uk,vk) = (Vk,Vk,...,Vk) »i
.'{_l
.‘ ._“1
S
? e
RS
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[, Step 2:
Computer dk as follows:

0 if j € K uK
p

d
: a) - @ - vl 1£3e® 3 =1,2..0 (1)
. 3 _
Vk if j € Kd
jon
” 1y of N
\ where o = I_ (n —p) i =
- jeK p y
o P *
If d # 0 go to step 3. -‘d
. 1f dk = 0, compute w as follows: :
t
' w = () @ e
0 jek np—p k B,
L P
vi -t_ (2 f ) vg 1f 1eK
.[ jeR 7P P
w, = (3)
i
Vk if ieKd

-

If v, > 0, the current solution is optimal to MP. Otherwise, let

w, = min {w,}. Update Kp and K., by deleting the index j, and repeat

J 1eruKd 1 d
Step 3:
*
Let A, = min (A ,3__ }
where
. 2(:t)t B od +¢dy
A= - - (4)
de B dk
4
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't‘.‘ and Amax the maximum value of A such that (uk,vk) + M, 1is nonnegative,

k
u v
clearly Amax =w if d, » 0 and )‘max = min {A°,A"} if dk } 0

k
. where

AY = min {-ui/di: Jek di < 0}

(] v J VPPN I g al
' A min { vk/dk : jeKd, dk < 0}
E‘ If Ak = o, the original problem is unbounded. Otherwise, let
u u
, (Ber1) = (%) + A
' Vit 1 Vk kk ]
Update xp, Ky '~j
“ Replace k by k+l and go to Step 2, 'i
It may be noted that at step 0 of iteration 2 onwards of the main R
1
<
algorithm, one could use the optimal of the previous iteration as the :
i starting point. Also, in solving the master problem, at each iteration

*
- only Kp and Kd need be updated at Step 2. At Step 3, in computing A it
may be convenient to update B = (P,Q)tB(P,Q) as follows.

Consider the case where the subprogram yields an extreme point S.

-

We must introduce a new row and column to B. Denoting the column of P(Q)

by Pi(Qi)’ it is easily verified that the new matrix is

-~

. - > - . - - -
S . e L e o . . " at e
L. . R R PR P VL AR PO OU P . vy PP TSP AT SO YA VOATSNG YRR Y LA, AP PP e W
P L R . A L.
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where
P Bp 1f lel
1 P
' @ = t
| -
QB3 1f Lel,
BtBPi if fel)
] Bi ) -t
P BQ, if 1el)
8 = pBp

In the following section, we give a justification to the algorithm X
based on the gradient projection method of Rosen and using the structure ]
of the master program. For more details about the gradient projection »
method see [6]. B
4,  Justification of the procedure '>7:

i Let M be the matrix of the coefficients of the binding constraints. ‘ .i
-
M has the following form:
) et : 0
i
]
1
D : 0
' |
B
1
0 : C
ol ! —
) -
6

. ) t e - O . - - N -,

at et

L .
. . . e . . A - « .

- N - - - y “ . " . L S . . - - - - . . . - . .
[P AT . P PR P G P S A o a2 a - o - . PR TN S, St S R, o, A
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t
where e 1s a lxnp vector of ones, D is a pxnp matrix and p = le

. Each
row in D has zeros everywhere except a -1 in the jth column where jer.
Cis a dxnp matrix where d = IKdI. Each row in C has zeros everywhere
except a -1 in the jth column where jeKd.
It 1s easy to show that (MtM)“1 is as follows:

1 ! 14y ¢t !
-p ' (n _p)e ] 0
S T 4 - = -
1 ! 1 !
a-p ! I, +;5 - E, 0O
- P _ _._P_ P _ 4.
| |
0 | 0 ' In
' . d

where E is an npxnp matrix with ones everywhere, and Ii is an ixd

idéntity matrix.
Then 1t can easily be verified that dk = —PVf(uk,vk) =
- [I-Mt(MMt)-lM] Vf(uk,vk) is given by (1), and w = (MMt)_lMVf(uk,vk) is
Yk
as given by (2) and (3). Let (1) = f((vk) + Xdk] .

*
Solvin dy(r) _ 0 for A gives A of Eq. (4).
£ “dx

5. A Reduced Gradient Algorithm

We now present a reduced gradient algorithm [6] to solve the master

problem MP.

Algorithm
Step O:

Choose a point ¥, = [:1) satisfying
1
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let k = 1 and go to Step 1.
Step 1:
t t .t
Let dk = (dB’dN) where

H
Let ik be the index of a positive component of (3k) (which will be
k

the current basic variable). Let Ei be the ikth row of B and rt =
k

et -
1k

By +¢c - B

The components of dN are given by

4 - —rj if § # 1k and rj <0
-y.r, if §j#4 and r, >0
b YiTs 3 k 2 i .
d =d, =-ed =-I d f
B ik N j#ikj q

1f dk = 0, stop; Yie 1s a Karush-Kuhn-Tucker point; Otherwise go to o

Step 2. ‘- 1
——
Step 2: . %
E
Compute 1
¢ - 4
* Zkadk + c dk - ,ﬂ
A = - o SR
deBdk )
]
1n(3",2_ 3
let Ak = min A ax

where:

- P

-y
i LI
i mjn {djk : djk <0} if d bo

max o 1f 4> 0
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and Yir? djk are the jth components of Y and dk respectively. If

Ak = o  the original problem is unbounded. Otherwise let Yl = Yy +

kkdk’ and let k = k + 1, and return to step 1.

The reader may note that the procedure for updating B at each main
iteration of the algorithm discussed in Section 3 holds in this case

also.

Summary

We have presented above two algorithms to solve the master problem,
Although no proof is available for the convergence of the Gradient
Projection Method, it is generally recognized that the method converges.
For the Reduced Gradient Algorithm, the reader may refer to [6] for a
convergence proof. Finite convergence of the main iteration of Sacher's
algorithm is obvious. At present computational testing is on hand to
compare the effectiveness of the proposed procedures. Other schemes for

special cases of the problem are also being developed.
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